Using LiDAR to link forest canopy conditions with diversity patterns of Lepidoptera at Mammoth Cave National Park

Dodd, L.E.^{1,2}, N.S. Skowronski³, M.B. Dickinson³, M.J. Lacki², & L.K. Rieske-Kinney¹

University of Kentucky Departments of Entomology¹ & Forestry² U.S. Forest Service, Northern Research Station³

- Large-scale patterns
 - Feasibility¹
 - Necessity²

¹Skowronski et al. 2007. Remote Sens. Environ. 108: 123-129.

²Lesak et al. 2011. Remote Sens. Environ. 115: 2823-2835

- Variable occurrence across habitats¹
 - Indicator species, responsive to forest management

- Variable occurrence across habitats¹
 - Indicator species, responsive to forest management
- Conspicuous members of the community
 - Major herbivores¹

- Variable occurrence across habitats¹
 - Indicator species, responsive to forest management
- Conspicuous members of the community
 - Major herbivores¹, a major prey source²

Survey Transect, 2010-2011

Mammoth Cave National Park

Core

Hibernacula

- Abundance & species richness within families
- Species richness estimation¹
 - Chao 2, ICE, & Mau Tau
 - EstimateS v.8.2; default settings; 1,000 iterations
- Top families for analysis with LiDAR

Methods LiDAR Survey

LiDAR = "Light Detection and Ranging"

Methods LiDAR Survey

- LiDAR = "Light Detection and Ranging"
- Discrete-return scanning LiDAR ¹
 - 900-1,600 nm wavelength
 - > 4 pulses / m²

Methods LiDAR Survey

- LiDAR = "Light Detection and Ranging"
- Data collected Oct 2010 (leaf-off) via fixed-wing aircraft

• What scale is meaningful?

- What scale is meaningful?
- Laser returns across 10 m strata

- What scale is meaningful?
- Laser returns across 10 m strata
- 15 m radii around trap locations¹

- 0-10 m CHP
- 10-20 m CHP
- 20-30 m CHP
- 30-42 m CHP
- Understory Ratio
 - 0-10 m CHP / Total CHP
 - Indicator of canopy "shape"

- 0-10 m CHP
- 10-20 m CHP
- 20-30 m CHP
- 30-42 m CHP
- Understory Ratio
 - 0-10 m CHP / Total CHP
 - Indicator of canopy "shape"

Gap Index

• Percentage of pixels with no laser returns >3 m height

Analysis Moth + LiDAR

- Today's talk... Canonical Correspondence Analysis
 - Standard ordination techniques following ter Braak¹
 - PC-ORD v. 4.25; default settings; 300 iterations

• Future... Predictive models & landscape maps

- 24,198 moths
- 535 species
- 28 families

- 24,198 moths
- 535 species
- 28 families
- How much of this assemblage are we accounting for?

- 24,198 moths
- 535 species
- 28 families

- Richness Estimation for Lepidoptera 800 Mean ± SE Species 600 400 Chao 2 -ICE 200 -Mau Tau 25 50 75 125 150 175 100 200 Accumulated Trap/Nights
- How much of this assemblage are we accounting for?

- 24,198 moths
- 535 species
- 28 families

- How much of this assemblage are we accounting for?
 - 86% (vs. ICE)
 - 87% (vs. Chao 2)

- Most abundant & richest families

 - Erebidae
 Noctuidae
 Pyralidae

- Geometridae
 Notodontidae

Results Lidar

Results

Mean Canopy Height Blue to Red → Min to Max Height

LiDAR

Results Lidar

- 1st & 2nd Axes significant $(P \le 0.01)$
- 12% dataset's variation explained
- "Inertia" of the dataset: 0.31

- Findings to date...
 - Abundance associated with overstory
 - Diversity associated with understory

- Findings to date...
 - Abundance associated with overstory
 - Diversity associated with understory
- Lep diversity driven by floral diversity in the understory
 - Riparian habitats^{1,2}
 - Logged upland sites³

- Findings to date...
 - Abundance associated with overstory
 - Diversity associated with understory
- How does occurrence of prey mesh with the predators?
 - Habitat structure vs. prey availability^{1,2,3}

- Findings to date...
 - Abundance associated with overstory
 - Diversity associated with understory
- How does occurrence of prey mesh with the predators?
 - Habitat structure vs. prey availability^{1,2,3}
 - What happens if/when White-nose syndrome hits?

Map by: Cal Butchkoski, PA Game Commission

Map by: Cal Butchkoski, PA Game Commission

Thanks!

- Funding
 - Joint Fire Science Program
- NPS Personnel
 - Dr. Rick Toomey
 - Steve Thomas
- Tech Support!
 - Tracy Culbertson
 - Klint Rose
 - Jennifer Winters

